X

...cargando

Cargando, espere un momento por favor...

 
 
 
Agencia de colocación autorizada Nº 9900000169

Euroinnova Formación

 

Problemario de Probabilidad

March 22, 2013 por Olga   Comentarios (0)

    1. Variables Aleatorias discretas
    2. Distribución binomial
    3. Distribución de Poisson
    4. Distribución hipergeométrica
    5. Distribución geométrica
    6. Variables aleatorias continuas
    7. Distribución uniforme
    8. Distribución normal
    9. Aproximación de la distribución Normal a la Binomial
    10. Distribución Exponencial
    11. Resumen

    Variables Aleatorias discretas

    1. Sea X una Variable Aleatoria que representa la demanda de horas extras en una empresa. La experiencia muestra que esta demanda se comporta de acuerdo a la siguiente función de probabilidad,

    image

    Encuentre la distribución de probabilidad y la distribución acumulada.

    2. Un lote de 7 lámparas contiene dos defectuosas. Un restaurante adquiere tres de estas lámparas. Sea x el número de lámparas defectuosas. Encuentre la distribución de x. Grafique.

    3. Se lanza un dado dos veces, si en los lanzamientos aparece el mismo número un jugador gana $ 11, en caso contrario pierde $ 7 ¿Cuál es el valor esperado de este juego?

    4. Una urna contiene 5 bolas rojas y 7 verdes. Se sacan tres bolas una tras otra sin sustitución, si un jugador gana $ 3 por cada bola roja y $ 1 por cada bola verde. ¿Cuánto se debería pagar por el derecho a jugar para que este juego sea justo? SOLUCIÓN:

    5. Si en el problema anterior las tres bolas se extraen con sustitución. ¿Cuándo sería el pago por el derecho a jugar para que el juego sea justo?

    6. A continuación se presenta una función de probabilidad, de la variable aleatoria x, el número de errores de escritura en un página.

     

    0

    1

    2

    3

    P(x)

    0.40

    0.35

    0.16

    0.09

    1. Encuentre la distribución acumulada para x,
    2. El valor esperado
    3. La varianza
    4. La desviación estándar


    7. En una escuela se aplica una prueba psicológica y una de las opciones consiste en hacer corresponder tres preguntas con tres respuestas. Si un estudiante contesta las tres respuestas sin repetición en las columnas aleatoriamente, encuentre la distribución de probabilidad para x, el número de respuestas correctas. SOLUCIÓN:

    8. En el problema 7, construya su función de distribución acumulada y calcule la desviación estándar. SOLUCIÓN:

    9. La función de probabilidad de una variable aleatoria discreta x esta dada por

    image

    Determine la función de distribución acumulada, la media, la varianza y la desviación estándar.

    10. La función de probabilidad de una variable aleatoria discreta x esta dada por

    image

    Determine:

    1. F(x)

    b) Su desviación estándar;

    11. La función de probabilidad de una Variable aleatoria discreta x esta dada por:

    image

    Determine la desviación estándar.

    12. En un estudio de mercado, se encontró que el número de yoghurts de 100 g consumidos por una familia varía de uno a cuatro. Sea x una variable aleatoria que representa el número de yoghurts de 100 g consumidos diariamente por una familia. El estudio de mercado mostró que la función de probabilidad de x, esta dada por:

    image

    Determine la desviación estándar,

    13. Sea x la variable aleatoria que representa la demanda semanal de una revista de modas en un expendio. La experiencia muestra que la demanda de esta artículo es una variable aleatoria que tiene la función de probabilidad dada por:

    image

    1. Encuentre la función de probabilidad acumulada,
    2. Determine el valor esperado

    14. Sea x una variable aleatoria que representa los componente defectuosos en el armado de televisores. La función de probabilidad de x está dada por,

    image

    1. Encuentre la distribución acumulada y desviación estándar

    16. Una empresa de alimentos con la entrada de TLC, necesita modernizar si maquinaria para ser más competitiva pero no tienen el suficiente capital, por lo que decide ofrecer bonos, los cuales vencen al cabo de varios años. La distribución acumulada de x el número de año al vencimiento para un bono elegido al azar, es:

    image

    Encuentre:

    1. P(x = 6), b) P(x > 4), c) P(2.1 < x < 6)

    17. En la zona sureste del país en la época de lluvias por lo general los caminos se hacen intransitable. Después de azotar un ciclón es necesario llevar ayuda alimenticia y médica a la población B desde la población A, para ir de estas poblaciones partiendo de A, hay dos caminos, en el primero existe un puente y en el segundo existen dos puentes, para que estos caminos sean transitable que los puentes esté en buen estado, la probabilidad de que los puentes se encuentren en servicio es de 0.7 y su funcionalidad es independiente ya que están construidos con características diferentes. Encuentre la distribución de probabilidad para x, el número de caminos posibles transitables para ir de la población A, a la población B después de haber partido la ayuda.

    18. Con el problema de colera en la República Mexicana la secretaria de salud implementó medidas preventivas de control principalmente en el agua potable de un municipio del cual llegaron informes a esta secretaria de que no cloraban el agua, encontraron dos contaminantes el del cólera y otro menor, los datos obtenidos son los siguientes, el 10% de los depósitos examinados no se encontró contaminante alguno, el 30% tenía la bacteria del cólera y el 70% tenía el contaminante menor. Si se elige un depósito al azar de este municipio, encuentre la distribución de probabilidad para x, el número de contaminante encontrados en el depósito.

    19. Una variable aleatoria discreta x tienen la función de probabilidad f (x) donde

    image

    1. Determine k
    2. Encuentre media y varianza de x
    3. Encuentre F(x)

    20. La demanda de cierto tipo de alcohol es –1, 0, +1, +2 por día con la probabilidades respectivas de 1/5, 1/10, 2/5, 3/10. Una demanda de –1 implica que se regresa una unidad. Encuentre la demanda esperada y la varianza. Dibuje la función de distribución de probabilidades.

    21- Un políticos tiene tres trabajadores hombres y tres trabajadores mujeres. Desea elegir dos trabajadores para una labor especial y decide seleccionar al azar. Sea x el número de hombres en su selección.

    1. ¿Cuál es el recorrido de x?
    2. Calcule la fdo y grafíquela
    3. Calcule la FDA, haga su gráfica

    22. En una lotería se rifará un millón de pesos, si son mil boletos, cada uno vale 10,000 pesos y si una persona compra 2 encuentre:

    1. La varianza
    2. La FDA si la variable aleatoria es la ganancia

    23. Sea x una Variable aleatoria que representa el número de caras menos el números de águilas en dos lanzamientos de una moneda, si esta moneda está cargada de tal manera que es doblemente probable que ocurra una cara que una águila, encuentre su distribución de probabilidad.

    Distribución binomial

    1. Un comerciante de verduras de la colonia Granjas México tienen conocimiento de 2/3 de nua caja de mango esta descompuesta o tiene "lunares". Si se eligen 4 mangos al azar por un comprador, encuentre la probabilidad de que. A) los 4 estén descompuestos o tengan lunares, b) de 1 a 3 estén descompuestos o tengan lunares.

    2. En un estudio sociológico, se encontró que 60% de los consumidores de tacos callejeros enferman de amibiasis, se seleccionan al azar 8 adictos a los tacos callejeros, encuentre la probabilidad de que, a) tres exactamente tengan amibiasis, b) Por lo menos 5 tengan amibiasis.

    3. Según una encuesta de una revista ¼, del total de empresas metal-mecánica de un estado x de la República Mexicana, acostumbran a desperdiciar a sus trabajadores antes de cumplir un determinado periodo de tiempo para que no adquieran la cabse y sean sindicalizados. Se seleccionan 6 empresas al azar, calcular la probabilidad de encontrar, a) de 2 a 5 de estas empresas, b) Menos de tres empresas

    4. Una de las medidas de control de calidad de un amortiguador para automóvil, es probarlo en los baches de la avenida Ermita – Iztapalapa, se encontró que el 20% de los amortiguadores sometidos a la prueba presentaban fuga de aceite y por lo tanto están defectuosos. Si se instalan 20 de estos amortiguadores, hallar la probabilidad de que, a) 4 estén defectuosos, b) más de 5 estén defectuosos. C) de 3 a 6 amortiguadores estén defectuosos.

    5. La probabilidad de que un paciente se recupere de una operación para extirpar un tumor cerebral es del 90%. Hallar la probabilidad de que se recuperen cinco de siete pacientes que esperan turno para ser operados.

    6. Un ingeniero Industrial que labora en el departamento de control de calidad de una empresa eléctrica, inspecciona una muestra al azar de tres alternadores de un lotes. Si el 15% de los alternadores del lote están defectuosos. ¿Cuál es la probabilidad de que en la muestra, a) ninguno sea defectuoso, b) uno sea defectuosos, c) al menos dos sean defectuosos?

    7. Un ingeniero en transportes informa que el 75% de la veces los trolebuses de una ruta determina en el DF llegan a su central con retraso de por lo menos veinte minutos en las horas pico, debido al intenso tráfico vehicular. Si se eligen 9 trolebuses, hallar la probabilidad de que menos de 4 arriben fuera de su horario.

    8. La probabilidad de que compact disk, dure al menos un año sin que falle es de 0.95, calcular la probabilidad de que en 15 de estos aparatos, a) 12 duren menos de un año, b) a lo más 5 duren menos de un año, c) al menos 2 duren menos de un año.

    9. La empresa empacadora de piñas LA IDEAL afirma que el 85% de las que llegan están listas para ser procesadas. Calcular la probabilidad de que 20 piñas que llegaron, a) 15 están listas para ser procesadas, b) a lo más 16 están para ser procesadas, c) al menos 18 están listas para ser procesadas.

    10. La probabilidad de que un estudiante de ingeniería apruebe un examen de matemática es de0.30, utilizando la formula de distribución binomial encuentre la probabilidad de que 4 de 10 estudiantes aprueben el examen.

    11. Una compañía de exploración gana un contrato con petróleos mexicanos para perforar pozos, esta compañía tiene estadísticas que le indican que en el 10% de los pozos de prueba que perfora encuentra un depósitos de gas natural. Si perfora 5 pozos, hallar la probabilidad de que en al menos en 2 se encuentre gas natural.

    12. En una urna se encuentran 7 pelotas azules y 3 verdes, se sacan 5 pelotas con reemplazo. Sea x el número de pelotas azules que se sacan, calcular la media y varianza de esta distribución.

    13. Se sabe que x es una variable aleatoria binomial con un media igual a 8 y una desviación estándar de 2. Encontrar la distribución de probabilidad de x.

    14. Sea x una variable aleatoria binomial. Hallar la distribución de probabilidad de x si m = 4 y n= 10.

    15. Una encuesta realizada en la UPIICSA del IPN con los estudiantes de la carrera de Lic. En Administración industrial acerca de la importancia de las matemáticas para ellos, reveló que el 80% de los entrevistados consideran que no les sirven para nada. Según esta encuesta ¿Cuál es la probabilidad de que por lo menos 4 de los 10 siguientes entrevistadores al azar sea de esta opinión?

    16. Una línea de coches de una cierta marca fue construida con el distribuidor hacia abajo, la compañía que los fabricó encontró en un estudio que hizo que el 30% de estos, al pasar por calles encharcadas se paraban por haberse mojado el distribuidor. Si 15 de estos coches son puestos a prueba en calles encharcadas, hallar la probabilidad de que a) de 4 a 7 se paren, b) menos de 5 paren.

    17. La Probabilidad de que un motor recién ajustado tire aceite en los primeros 100 km por lo retenes es de 0.05. Si 10 automóviles se ajustan en un taller mecánico. Hallar la probabilidad de que, a) menos de 4 tiren aceite por retenes, b) ninguno tire aceites por los retenes, c) al menos 2 tiren aceite por los retenes, d) la desviación de la distribución de probabilidad.

    18. La probabilidad de que un número se presente a asesoría durante el semestre en alguna asignatura de la academia de matemáticas con el profesor que el corresponde es de 0.01. Si un profesor de una determinada materia tienen 50 alumnos hallar la probabilidad de que se presenten a asesoría durante el semestre, a) al menos 4 alumnos, b) más de 5 alumnos, c) ningún alumno.

    19. Una prestigiada agencia realizó una encuesta entre los residente de la población de Amatlán Veracruz, acerca de sus preferencia para votar por uno de los dos candidatos a alcalde, esta encuesta mostró que el 40% de los ciudadano tienen intención de votar por el candidato Nabor.

    Calcular la probabilidad de que más de 5 de las siguientes 20 personas entrevistadas tengan intención de votar por Nabor.

    20. Obtenga la media y la varianza de la variable aleatoria binomial del problema 16.

    21. Si 6 de 18 viejas vecindades en un ciudad violan el código de construcción. ¿cuál es la probabilidad de que un inspector de vecindades, que selecciona aleatoriamente cuatro de ellos para construcción, descubra que:

    1. ninguna de las viejas vecindades viola el código de construcción
    2. una viola el código de construcción
    3. dos violan el código de construcción
    4. Al menos tres violan el código de construcción

    22. En cierta ciudad, se da hecho que los altos impuestos son la causa del 75% de todas la quiebras personales. Empléese la distribución binomial para calcular la probabilidad de que los gastos médicos sean la causa de dos de la cuatro próximas quiebras personales registradas en toa la ciudad en tal ciudad.

    23. Una despachador de cierta ruta de microbuses informa que el 75% de las veces los microbuses de esa ruta llegan a su terminal con un retraso de por lo menos 20 minutos en las horas pico debido al intenso tráfico vehicular, si se eligen 9 microbuses, hallar la probabilidad de que menos de 4 arriben fuerza de su horario.

    24. al probar una cierta clase de droga en 100 estudiantes se encontró que 25 de ellos perdieron el hábitos de copiar en los exámenes. De los siguientes 15 estudiantes que prueban esa drogra obtenga la probabilidad de que:

    1. Exactamente 8 pierdan el hábito de copiar e) Más de 5 pierdan el hábito de copiar
    2. De 3 a 6 inclusive pierda el hábito de copiar f) Calcule el valor esperado y la varianza
    3. De 3 a 6 pierda el hábito de copiar
    4. Menos de 4 pierdan el hábito de copiar

    Distribución de Poisson

    1. En un crucero un oficial de transito hacen en promedio 3 infracciones diarias. Hallar la probabilidad de que un día cualquiera levante, a) exactamente 5 infracciones, b) menos de tres infracciones, c) por lo menos 2 infracciones.

    2. Una cajera novata de un tienda de autoservicio se equivoca en promedio 2 veces en el cobro por día. ¿Cuál es la probabilidad de que en un día cualquiera, a) tenga 4 o más equivocaciones, b) no tenga ninguna equivocación?

    3. En un estudio de inventario realizado en un tienda de importación se determinó que se pierden en promedio 5 artículo por día- ¿cuál es la probabilidad de que en un día determinado dichos artículos, a) se pierdan en una cantidad mayor que 5, b) no se pierda ninguno?

    4. La probabilidad de que un apersona muera de cólera o tifoidea por comer sopes en la calle es de 0.002. Encuentre la probabilidad de que mueran menos de 5 de las siguientes 2000 personas que contrajeron estas enfermedades por comer sopes en la calle.

    5. La secretaría de Hacienda estima que en promedio una de 1,000 personas comete un fraude al elaborar su declaración de impuestos. Se seleccionan al azar y examinan 10,000 declaraciones, obtenga la probabilidad de que a lo más 8 tengan la mala costumbre de defraudar a Hacienda.

    6. el número de descomposiciones que sufre una copiadora en un semana, tienen una distribución de Poisson con l = 0.3. Calcular la probabilidad de que no tenga ninguna descompostura en dos semanas consecutivas.

    7. Un detector de partículas, detecta en promedio 5 partículas por cada milisegundo. ¿Cuál es la probabilidad de que se detecten, a) 8 partículas en 3 ms, b) 2 partículas de 0.5 ms?

    8. Se estiman que en promedio en uno de cada 4,000 vuelos de una línea tiene un accidente. Si en el transcurso de un año esta línea 2,000 vuelos, ¿Cuál es la probabilidad de que en el lapso de 3 años le ocurra, a) un accidente a algún avión de esta compañía, b) 5 accidentes de esta línea aérea?

    9. Se considera que en promedio 2 personas que deben declarar y pagar impuestos en una aduana, no lo hacen. Calcular las probabilidades siguientes considerando que lo anterior sucede en un lapso de tiempo de 3 días, a) 3 personas pasan sin declarar en el transcurso de un día, b) 3 personas pasa sin declarar en el transcurso de 3 días, c) 3 personas pasan sin declarar en el transcurso de 6 días.

    10. En taller tipográfico se producen libros de matemáticas y se sabe que en promedio se producen libros defectuosos en una razón de 21 por cada 10,000 libros, los defectuosos consisten en hojas en blanco, mala encuadernación, cortes y rebajas incorrectas etc. Calcular la probabilidad de que en un edición de un libro con 50,000 ejemplares se tengan 50 defectuosos.

    11. Una compañía de seguros se dedica a asegurar cosechas de maíz, frijol y arroz, en promedio al año se pierde 17 de cada 500 cosechas aseguradas. Si la compañía decide asegurar 1,000 cosechas, ¿Cual es la probabilidad de que se pierdan 25 cosechas?

    12. En una fabrica de ropa el gerente de producción, tiene estadísticas que le indican que en promedio existe un defecto en cierta tela que produce por cada rollo, calcular la probabilidad de que, a) tenga un defecto un rollo seleccionado al azar, b) no tenga ningún defecto un rollo seleccionado al azar, c) no se encuentre ningún defecto en dos rollos seleccionado al azar, d) se encuentren 3 defectos en un total de 4 rollos seleccionado al azar.

    13. Una fábrica de chocolates detectó que el 2% de sus envolturas de un chocolate en especial no lleva pilón. Si se eligen 400 de dichas envoltura:

    1. ¿Cuántas envoltura sin pilón se esperaría encontrar?
    2. ¿Cuál es la probabilidad de hallar a lo más 5 envoltura sin pilón?

    c) ¿Cuál es la probabilidad de hallar al menos 5 envoltura sin pilón?

    14. La probabilidad de que una persona muera de cáncer es de 0.0003. Si se hace la autopsia a 20,000 cadáveres. ¿Cuál es la probabilidad de que, a) nadie haya muerto de Cáncer, b) Por lo menos dos hayan muerto de Cáncer, c) Más de 6 hayan muerto de Cáncer?

    15. Suponga que en promedio una secretaria comete 3 errores de mecanografía por página. Encuentre la probabilidad de que en un página tenga, a) exactamente 5 errores, b) al menos 4 errores.

    16. En un agencia automotriz se sabe que en promedio dos de cada 100 clientes regresan a reclamar algún defecto visible que tiene el automóvil, esto ocurre en un tiempo de un mes. Sobre esta base si se vende 100 autos calcular la probabilidad de que, a) más de 3 clientes regresen a reclamar en el lapso de un mes, b) 4 clientes regresen a reclamar en el lapso de un mes, c) calcular la media y la varianza.

    17. En una compañía aseguradora existen estadísticas que revelan que cada año promedio 1 de cada 1,000 conductores asegurados tienen una colisión fuerte (Pérdida total). Si una compañía en particular tiene 500 automóviles asegurados, calcular la probabilidad de que colisionen, a) 4 conductores asegurados, b) por lo menos dos conductores asegurados colisionen, c) más de dos conductores asegurados.

    18. En una población de la sierra de Guerrero donde la contaminación es prácticamente nula, la probabilidad de que una persona contraiga una infección respiratoria es de 0.0004. Calcular la probabilidad de que a lo más 5 de 10,000 personas que se sometan a un análisis médico hayan contraído la enfermedad.

    19. Un fabricante de video grabadoras sabe que el 10% tiene algún defecto, si un tienda de aparato electrónicos adquiere 50 videos grabadoras, hallar la probabilidad de que, a) Cuatro estén defectuosas, b) a los más 3 son defectuosas.

    20. En un estacionamiento en la central de abastos se tienen dos entradas, en la primera llegan en promedio 4 vehículo cada hora y por la segunda 5 vehículos cada hora, la llegada de vehículo a estas entradas son independiente. Calcular la probabilidad de que llegue más de 7 automóviles en una hora.

    Distribución hipergeométrica

    1- Un fabricante de automóviles compra bombas de gasolina a una compañía que las fabrica bajo normas específicas de calidad. El fabricante recibe un lote de 100 bombas de gasolina para automóvil, selecciona cinco al azar y las prueba,, si encuentra que a lo más una es defectuosa acepta el pedido, hallar la probabilidad de que lote sea rechazado si en realidad contiene 7 bombas defectuosas.

    2. Un cargamento de 80 bicicleta de carrera contienen 5 defectuosas, cuatro de ellas son seleccionadas al azar y embarcadas a una distribuidor, hallar la probabilidad de que este embarque tenga una defectuosa.

    3. Una sociedad de egresados de Física y Matemáticas, está considerando para sus tres encuentros anuales doce ciudades del país como futura sedes, seis se encuentran en el sureste de México. Para que no exista favoritismo la selección se hace al azar. Si ninguna de la ciudades puede ser elegida más de una vez, hallar la probabilidad de que, a) ninguno de los encuentros se celebre en el sureste de México, b) a lo más dos encuentros se celebren en el sureste de México.

    4. En un examen de E.T.S. de matemáticas en la cual se presentan 32 estudiantes se sospecha que hay tres suplantadores, el jefe de la academia decide tomar seis credenciales al azar para verificar la autenticidad de estas. ¿cuál es la probabilidad de que se encuentren, a) a lo más dos suplantadores, b) dos suplantadores?

    5. Es común que en los exámenes de probabilidad y Estadística II algunos estudiantes que no se prepararon adecuadamente traten de utilizar los llamados "acordeones" para recordar todas las fórmulas, estos estudiantes escriben sus acordeones por lo general en la tablas estadísticas, los cuales fácilmente detectados por un profesor cuidadoso. Considérese un grupo de 40 alumnos, tres de los cuales escribieron sus acordeones en las tablas estadísticas, el profesor confiando en la honestidad de sus estudiantes decide revisar aleatoriamente las tablas de siete de ellos. ¿Cuál es la probabilidad de que detecte a los infractores?

    6. Una industria editorial busca en la sección amarilla a sus futuros proveedores, el encargado de este trabajo por flojera decide hablar por teléfono sólo a tres para cotización precios de un cierto material, de un total de seis, dos dan el precio más barato del D.F. ¿Cuál es la probabilidad de que haya hablado, a) a unos de los proveedores que dan el precio más barato, b) al menos a uno de los proveedores que den el precio más barato?

    7. En un estante de un supermercado un cliente observa que sólo quedan diez focos de un oferta, selecciona cuatro para llevarlo a su casa, pero del lote de diez tres no funcionan. ¿Cuál es la probabilidad de que, a) todos los seleccionados funcionen, b) por lo menos dos no funcionen?

    8. Se estima que 20 de cada 50 personas residente en la delegación Iztacalco están en contra del cobro del nuevo impuesto para la adquisición de vehículo usados. Se entrevista a 15 personas y se les pide su opinión, ¿Cuál es la probabilidad de que a lo más 7 no estén a favor del nuevo impuesto?

    9. Se sabe que de 150 empleados de la Secretaria de Protección y Vialidad de algunas delegaciones: 30 son corruptos y exigen "mordidas" en los trámites de placas, cambio de propietario y licencias de manejo, La contraloría interna de esa Secretaría decide abrir una investigación para detectar a algunos malos elementos y aplicarles las sanciones correspondientes para que los restantes se corrijan. Un inspector selecciona 10 nombres al azar de los 150 empleados. Calcular la probabilidad de que por lo menos 3 sean malos elementos.

    10. Un cargamento de 120 pantalones tiene 5 defectuosos. Si 3 pantalones son seleccionados aleatoriamente y empacado para un cliente, encuentre la probabilidad de que al cliente le toque uno defectuoso.

    11. Una empresa que manufactura autoestéreo utilizados un sistema de aceptación para ciertos productos antes de que sean enviados. El método utilizados es de doble etapa. Se preparan cajas de 25 artículo para su embarque y se prueba una muestra de 3 para localizar defectuosos. Si se halla un defectuoso en la muestra de 3 para localizar defectuosos. Si se halla un defectuoso en la muestra, se regresa la caja completa para su reposición, si no se halla ninguno defectuoso la carga se envía a su destino. ¿cuál es la probabilidad de que contenga sólo un defectuosos y sea devuelta para su reposición?

    12. Una empresa empacadora de alimentos y de productos pesqueros, evalúa su proceso de inspección con respecto a 50 productos, el proceso consiste en seleccionar una muestra de 5 y dar por buena una remesa, si se halla que no más de 2 son defectuosos. ¿Qué proporción de envíos con 20% de defectuosos podrá ser aceptada?

    13. Un falluquero para evitar el pago de impuesto sobre la Renta agrega 6 televisores nuevos en un lote que contienen 9 televisores descompuestos y usados. Si el policía aduanal selecciona 3 de estos televisores para su inspección. ¿Cuál es la probabilidad de que el falluquero sea detectado?

    14. Los falluqueros de los tianguis por lo general se abastecen de artículos con bajo control de calidad, un falluquero tienen 12 linternas de manos para su venta en un tianguis, 9 están buenas y las restantes presentan algún defecto, si una persona que visita el tianguis selecciona 4 linternas, ¿Cuál es la probabilidad de que 3 de ellas estén defectuosas?

    15. A raíz de los temblores de 1985 en el D.F. se establecieron nuevos códigos de construcción y se obligó a los constructores a respetarlos. Si 8 de 24 nuevos edificios violan el código de construcción, ¿cuál es la probabilidad de que un inspector que selecciona al azar 5 de ellos descubra que, a) ninguno viola el código, b) tres violan el código, c) al menos dos violan el código de construcción.

    16. De los 20 proyectos presentados por un grupo de investigadores de una Universidad, 12 son del área de informática y los restante del área tecnológica. Si tres de estos proyectos son cancelados por recorte de presupuesto, esta cancelación se realizó al azar. ¿Cuál es la probabilidad de que, a) dos de los proyectos cancelados sean del área tecnológica, b) a lo más uno sea del área tecnológica?

    17. En una encuesta a 80 personas con edad para votar, realizada por el equipo de campaña de un candidato a alcalde para un municipio en el estado de México, reveló que el 40% tiene intención de votar por él. Si 4 de estas personas se seleccionan al azar y se les pide su opinión. ¿Cuál es la probabilidad de que a) más de 1 tenga intención de votar por él? B) más de 1 pero menos de 4 tengan intención de votar por él?

    18. Las autoridades del D.F y el Estado de México están en pláticas que la colonia San Felipe de Jesús pase a jurisdicción del Estado de México. Si se encuesta a 2,000 residentes de un sección de esta colonia y la mitad de ellos se oponen a la anexión. ¿Cuál es la Probabilidad de que en una muestra aleatoria de 10 personas, por lo menos 2 estén a favor del proyecto de anexión?

    19. En la clase de Introducción a la Ingeniería Industrial el maestro acostumbra a pasar a exponer a los alumnos en equipos de tres seleccionados a la hora de clase, 9 alumnos aún no han expuesto uno de ellos no preparó el tema, ¿Cuál es la probabilidad de que el estudiantes que no preparó la clase sea escogido, suponiendo una selección aleatoria entre los 9?

    20. ¿Cuál es la probabilidad de que un portero de un cine se rehuse a dejar entrar a 2 menores de edad, ya que se exhibe una película sólo para adultos, su al revisar sus identificaciones de 4 personas entre un grupo de 8, tres de los cuales no son mayores de edad?

    21. En un caja hay 5 envases de un litro de leche de los cuales 4 de ellos contienen leche fresca. Si se seleccionan al azar 2 envases, ¿Cual es la probabilidad de obtener exactamente a) 2 litros de leche fresca, b) un litro de leche fresca?

    22. Un poli, antinarcóticos inspecciona una muestra aleatoria de 3 autos de cada lote de 24 que están listos para ser embarcados. Si un lote contiene 6 autos en los que se esconde droga. ¿Cuáles son la probabilidades de que la muestra del inspector contenga a ninguna de los autos con droga, b) solamente uno de los autos con droga, c) al menos dos autos con droga?

    23. Un cargamento de 120 perro contienen cinco con rabia, si tres de ellos son seleccionados aleatoriamente y embarcados para un cliente, encuéntrese la probabilidad de que al cliente le toque un perro con rabia, utilizando, a) la fórmula de la distribución hipergeométrica, b) la fórmula de la distribución binomial como una aproximación.

    24. Se regresan las máquinas fotocopiadoras al proveedor para que la limpie y las devuelva, de acuerdo con el convenio de arrendamiento. Si no se llevan a cabo las reparaciones principales como resultado, algunos clientes reciben máquinas que funcionan mal. Entre 8 fotocopiadoras usadas que se suministraron, 3 funcionan mal. Un cliente desea rentar cuatro máquinas rápidamente y se le mandan sin verificarlas. Calcular la probabilidad que el cliente reciba, a) Ninguna de las máquinas que trabajen mal, b) por lo menos una de las máquinas que trabajan mal, c) Tres máquinas que trabajan mal.

    Distribución geométrica

    1. La probabilidad de que un persona se contagia al saludar de un beso a sus compañeros de un grupo es de 0.4. ¿Cuál es la probabilidad de que se contagia al saludar el tercero?

    2. El 70% de lo aspirantes a un trabajo ha estudiado en el CONALEP. A todos ellos se le entrevista y se les hace una prueba de conocimiento, uno tras otro. Si los aspirantes se seleccionan al azar, determine la probabilidad de que encuentre al primer aspirante proveniente del CONALEP en la quinta entrevista.

    3. Un buscador de tesoros excavará una serie de hoyos en un área determinada, con una técnica sólo conocida por él, para encontrar un tesoro, la probabilidad de éxito es de 0.2. Hallar la probabilidad de que le tesoro, a) sea encontrado al excavar el tercer hoyo, b) no sea encontrado si sólo tiene ánimo de excavar 10 hoyos.

    4- Los expedientes de una compañía de helados indica que la probabilidad de que uno de sus congeladores requiera reparación en el plazo de un año es de 0.20. Si se realiza una revisión de todos sus refrigerados. ¿Cuál es la probabilidad de que el sexto que se revise sea le primer congelador que necesite ser reparado?

    5. Un policía experto en tiro de pistola, se jacta que el 95% de las veces acierta en el blanco. Hallar la probabilidad de que falle por primera vez en su decimoquinto tiro.

    6. Muchos alumnos a la hora de inscribirse a un nuevo se dejan llevar por lo comentarios referentes a los profesores del departamento de matemáticas, la probabilidad de que un estudiante lo crea es del 80%. ¿Cuál es la probabilidad de que el tercer estudiante que oye el comentario es el primero que los cree?

    7. Se considera que muchas veces al comprar en el tianguis no se da el pero completo, la probabilidad de que una báscula esté alterada y no de él peso completo es del 5 %. Un inspector de la Secretaria de Comercio se presenta a revisar la báscula de un tianguis x. Hallar la probabilidad de que la sexta báscula revisada sea la primera en estar alterada.

    8. Un estudiante que no sea ha preparado para el examen final de Filosofía, debe contestar 20 reactivos, toda pregunta tiene 5 posibles respuestas, una es la correcta. Si decide contestar en orden calcula la probabilidad de que obtenga su primer respuesta correcta, a) en la pregunta cinco, b) en la décima pregunta.

    9. Un inspector de la Secretaria de Consumidor decide visitar establecimiento para verificar una denuncia de que no se respetan los precios oficiales, para esto decide organizar las visitas en un orden determinado. Como estos establecimientos distribuyen diversos productos la probabilidad de que le inspector detecte irregularidades es del 8%, hallar la probabilidad de que por lo menos detecte la primera irregularidad a partir de la tercera visita.

    10. Se estima que el 70% de los aficionados al "Basket Ball" en la República Mexinaca apoya a los Lakers de Los Ángeles. Se entrevista a una grupo de aficionados al azar, ¿Cuál es la probabilidad de que se tenga que entrevistar a) a cuatro personas, para encontrar al primero aficionado que apoya a los Lakers, b) a al menos cuatro para encontrar al primer aficionado que apoya a los Lakers?

    11. El 25% de los estudiantes que aspiran a hacer el servicio social en la academias de matemáticas de cierta escuela son experto en programación computacional. El jefe de las academias de matemáticas entrevista uno tras otro a los aspirantes, los cuales son seleccionados aleatoriamente. Encuentre la probabilidad de que el quinto aspirante entrevistado sea el primero con conocimientos de programación.

    12. Un inspector de la SECOFI, ha encontrado que 6 de 10 tiendas que visita presentan irregularidades. Si el inspector visita una serie de tiendas al azar. ¿Cuál es la probabilidad de que, a) la primera tienda con irregularidades que visite sea la segunda, b) la primera tienda con irregularidades fuera encontrada después de revisar la cuarta?

    13. Los expediente de los pacientes de un dentista, indica que la probabilidad de que uno de ellos regresa a consulta en el plazo de un año es de 20%. Hallar la probabilidad de que el sexto paciente examinado sea el primero que regresó en el mismo año.

    14. En un concurso de tiro de participante acierta el 90% de las veces, hallar la probabilidad de que falle por primera vez en el décimo disparo.

    15. En un fábrica de tornillos se tiene calculado la probabilidad máxima de desviación del diámetro de una serie de tornillos en particular en 5% Hallar la probabilidad de que el cuarto tornillo sometido a prueba sea el primero en mostrar esa desviación.

    16. Un pasantes de la carrera de Ingeniería Industrial pretende titularse por examen general de conocimientos. El número de veces que se aplica es un conjunto de eventos independientes con una probabilidad de aprobar del 40%. Hallar la probabilidad de que no se necesite más de 3 intentos para aprobar el examen.

    17. De acuerdo a una encuesta realizada por una compañía, se estima que el 70% de un población con derecho a voto tienen preferencia por el candidato A. Si se entrevista a un grupo de personas al azar, hallar la probabilidad de que a la tercer persona que se encueste sea el primer votante que prefiere al candidato A.

    18. Un estudiante que es afecto a copiar en los exámenes, tiene una probabilidad de que lo sorprendan del 25%. Hallar la probabilidad de que lo atrapen por primera vez en su tercer examen.

    19. La secretaría de Comercio recibió una denuncia de que en un mercado en particular la básculas están alteradas, si la probabilidad de que una de estas báscula este alterada es del 3%, hallar la probabilidad de que un inspector enviado para este efecto detecte que la sexta de la báscula examinada sea la primera en mostrar alteraciones.

    20. En nuestro medio es muy común soltar un borrego (rumor), la probabilidad de que una persona los crea es de 0.6. Hallar la probabilidad de que la tercer persona que lo escucha sea la primera que lo crea.

    21. Un policía experto recibe un soborno el 95% de las veces que cree observar una infracción a cierto reglamento. ¿Cuál es la probabilidad de que no reciba soborno por primera vez en su décimo quinto intento?

    22. Sesenta por ciento de la población de consumidores prefieres refrescos con gas. Se entrevista a un grupo de ellos, ¿Cuál es la probabilidad de que se tenga que entrevistar exactamente a cinco personas antes de encontrar a una que prefiera refresco con gas? ¿Y que entrevistar por lo menos a cinco personas?

    23. Si la tercera parte de las persona que llegan tarde a cierto evento son negros, calcular la probabilidad de que, a) La primera persona que llega tarde a ese evento sea negro, b) Si asisten 10 personas a la reunión, la segunda persona que llega tarde a ese evento es negro.

    Variables aleatorias continuas

    1. Sea X una variable aleatoria continua, con función de densidad definida por

    image

    1. Compruebe que es F.D.P.
    2. Encuentre F (x)
    3. P (1.5 < x < 2)
    1. image

      Calcule V (x).

    2. Sea X una variable aleatoria continua, con función de densidad definida por
    3. Sea f (x) una variable aleatoria continua, cuya función de densidad está definida por

    image

    1. Encuentre F(x)
    2. P (2 < x < 4).

    4.Sea X una variable aleatoria continua, cuya función de densidad está definida por

    image

    1. Encuentre F (x)
    2. P (1 < x < 5)
    3. P (3 < x < 5).
    1. Sea X una variable aleatoria continua, cuya función de densidad está definida por

    image

    1. encuentre F (x)
    2. P (0.5 < x < 0.9).
    1. image

      Compruebe que es una función de densidad.

    2. Sea X una variable aleatoria continua, cuya función está dada por

      image

      Compruebe que es una función de densidad.

    3. Sea X una variable aleatoria continua, cuya función está dada por
    4. Sea X una variable aleatoria continua, con función de densidad

    image

    1. Compruebe que es F.D.P.
    2. P (1.1 < x < 1.3)
    1. Sea X una variable aleatoria continua, con función de densidad

    image

    1. Compruebe que es F.D.P.
    2. Encuentre P (x < 0.3)
    3. Encuentre P (x > 0.6)
    4. Encuentre P (0.2 < x < 0.4).
    1. image

      Encuentre el valor de k, para el cual f (x) es F.D.P.

    2. Sea X una variable aleatoria continua, con función
    3. Sea X una variable aleatoria continua, con función

    image

    1. Para qué valores de k, f (x) es una F.D.P.
    2. Encuentre F (x)
    3. Encuentre V (x)
    1. Sea X una variable aleatoria continua, con función

    image

    1. Encuentre el valor de k, para el cual f (x) es F.D.P.
    2. Encuentre F (x).

    13. Sea X una variable aleatoria continua, con función

    image

    1. Encuentre el valor de k, para el cual f (x) es F.D.P.
    2. Encuentre V (x).

    14. Sea X una variable aleatoria continua, con función de distribución acumulada

    image

    1. Encuentre f (x)
    2. Encuentre P (1 < x < 1.5).

    15. Sea X una variable aleatoria continua de distribución acumulada

    image

    1. Encuentre V (x), b) Encuentre f (x)

    16. Sea una variable aleatoria continua, con función de distribución acumulada

    image

    1. Encuentre f (x)
    2. Encuentre P (2.4 < x < 3.5)

    17. Sea X una variable aleatoria continua, con función de densidad

    image

    1. Encuentre F (x), b) Encuentre V (x)


    Distribución uniforme

    1. El tiempo de vida de una locomotora de ferrocarril, se comporta según un modelo uniforme continuo en el intervalo [5, 13] años. Hallar la Probabilidad de que se recuperen los gastos de inversión, si por lo menos funciona 8 años.
    2. Sea X una variable aleatoria continua, distribuida uniformemente en el intervalo cerrado [0, t]. Obtenga el valor de t, si se sabe que P (X < 2) = 0.4
    3. Un grupo de investigadores interesados en estudiar el Río Usumacinta, encontró que de profundidad varía de un día a otro uniformemente entre 12 y 15 metros.
    1. Calcule la probabilidad de que en la siguiente medición se obtenga menos de 13 metros.
    2. ¿Cuál es la profundidad promedio del Río?
    3. Obtenga la desviación estándar (s ) para esta distribución
    1. Un satélite que ha cumplido su ciclo en órbita alrededor de la Tierra esta a punto de caer en ella, los especialistas calcularon su caída en algún lugar entre los puntos P y Q, si su comportamiento es uniforme calcular la probabilidad de que, a) Caiga más cerca de P que de Q, b) la distancia con respecto a P sea dos veces más larga con respecto a Q.

      image

      a) Determine F(x), b) Calcule P(2 < x < 4) c) Calcule P(x > 5) d) Haga las gráficas de f (x) y F (x). e) Encuentre la media m y la varianza s 2.

    2. Sea X una variable aleatoria con distribución
    3. En un moderno negocio de hamburguesas se despacha el refresco en vasos, con una variabilidad uniforme entre 130 y 160 mililitros (ml).
    1. Obtener un vaso que contenga a los más 140 ml.
    2. ¿Cuántos ml. contiene en promedio un vaso?
    3. Obtenga la varianza para esta distribución.
    1. Un meteorólogo hace una medición del tiempo al azar, suponiendo que está distribuida uniformemente en el intervalo [1, 4]. A) Calcule la probabilidad de que la medición este entre 5/2 y 3. b) Si se realizan 6 mediciones independientes, hallar la probabilidad de que exactamente 3 de ellas estén entre 2 y 3.
    2. Un punto se elige en un segmento de línea [1, 3]. Suponiendo que X es una variable aleatoria continua distribuida uniformemente en este intervalo, encontrar f (x) y F (x).

      a) P(x > 2) = 1/3, b) P(x > 2) = ½, c) P(x < ½) = 0.8, d) P(|x| < 2) = P(|x| > 2)

    3. Suponga que X es una variable aleatoria distribuida uniformemente en [-a, a] en donde a > 0, determinar a en los casos que sea posible:
    4. Una resistencia se comporta de acuerdo a una distribución continua entre 900 y 1,100 Ohms, encuentre la probabilidad de que la resistencia, a) aguante a los más 950 ohms antes de quemarse, b) este entre 950 y 1,050 ohms.
    5. Sea X una variable aleatoria continua, referida al error cometido al determinar la densidad de una substancia. Supóngase que X esta distribuida uniformemente en el intervalo [-0.02, 0.02]. ¿Cuál es la probabilidad de que el error cometido este, a) entre 0.010 y 0.014, b) entre –0.011 y 0.011?
    6. El tiempo que tarda un autobús en ir de un destino A a un destino B y viceversa, está distribuido uniformemente en un intervalo de 70 a 90 min. Hallar la probabilidad de que la duración del viaje sea mayor a 85 minutos, si se sabe que el viaje dura más de 55 minutos.
    7. Una variable aleatoria X esta distribuida uniformemente, con media igual a uno y varianza tres. Encuentre P ( -1 < x < 3).
    8. Supóngase que la concentración de contaminación en la Ciudad de México (D.F.), se encuentra distribuida uniformemente en el intervalo [40, 250] I.M.E.C.A. (Índice Metropolitano de la Contaminación del Aire). Si se considera como tóxica una concentración de 150 I.M.E.C.A.s o más. Hallar la probabilidad de que al hacerse una medición la concentración de contaminación sea tóxica.
    9. Sea X una variable aleatoria continua, con distribución uniforme en el intervalo cerrado [a, b] Encuentre P(m - s < x < m + s ).
    10. Sea X una variable aleatoria continua, con distribución uniforme en el intervalo [a, b], a < b. Si la media es igual a uno y la varianza es 12, encuentre los valores de a y b.
    11. Demuestre que image

    Distribución normal

    1. En una carrera automovilística, las velocidades registradas tienen una media de 90 km/h. Con una desviación estándar de 8 km/h. Si se supone normalidad, encuentre los porcentajes de velocidad, a) mayores de 100 km/h, b) menores de 80 km/h, c) Que se encuentran entre 85 y 95 km/h.
    2. El tiempo necesario para llenar un frasco de un producto es una variable aleatoria que sigue una distribución normal, con una media de 10 minutos y una desviación estándar de un minuto. Encuentre el tiempo de llenado del frasco de manera tal que la probabilidad de exceder esta sea de 0.03.
    3. Una fábrica de tornillos produce un tipo de tornillo con un diámetro promedio de 6.5 mm y una desviación estándar de 1.5 mm, ¿cuál es la probabilidad de encontrar tornillos con diámetro a) mayor que 7mm, y b) entre 6 y 7 mm? Suponga normalidad.
    4. En invierno en la Sierra de Chihuahua la temperatura media diaria fue de 5ºC con una desviación estándar de 2ºC. Si la distribución de las temperaturas diarias es aproximadamente normal. ¿Cuál es la probabilidad de que en un día determinado la temperatura hubiera estado, a) entre 3 y 6º C? b) a lo más de 4ºC? c) Por lo menos de 5.5ºC?
    5. Una empresa fabrica baleros con un diámetro de 2.006 cm y una desviación estándar de 0.02 cm. Estadística realizadas demostraron que todos los baleros fabricados con un diámetro de 1.95 cm hasta 2.03, son aceptados por los distribuidores fuera de estos se regresan a la fabrica. ¿Cuántos baleros de un grupo de 500 se espera que sean rechazados si el diámetro especificado sigue una distribución normal?
    6. En un aserradero se producen polines cuyo largo debe ser 2.12m en promedio, sin embargo si estos polines se encuentran entre 2m y 2.24m se observa que se rechazan aproximadamente el 2.5% por exceder el largo superior y un 2.5% por no llegar al largo inferior. Suponiendo que las longitudes están distribuidas normalmente, encuentre la desviación estándar de esta distribución.
    7. La vida útil de un refrigerador de una marca de prestigio es de 5 años en promedio con una desviación estándar de 1.5 años. La garantía de estos aparatos es por un año, hallar la probabilidad de que si se adquiere uno de estos refrigeradores se tenga que reclamar la substitución.
    8. El tiempo promedio que tarda un ciclista en recorrer una distancia del punto A al punto B es de 40 minutos, con una varianza de 16 minutos. Hallar la probabilidad de que, a) tarde al menos 45 minutos, b) tarde de 36 a 45 minutos. Suponga normalidad.
    9. La vida útil de la pilar alcalinas de la marca E, tienen una media de 8.5 h con un desviación estándar de 0.5 h, las pilas de la marca D (Duracel), tienen un media de 8.2 h y una desviación estándar de 0.4 h, en ambas marcas la vida útil tiene una distribución normal. Si se elige una pila de cada marca, ¿cuál es la probabilidad de que la marca E dure más de 8.25 h y la marca D menos de 8.4 h?
    10. Las pruebas que se han realizado en cierto componentes electrónicos han mostrado que tienen una vida media de 20 h con una desviación estándar de 2 h, su distribución es normal. Hallar la probabilidad de que si se eligiera una muestra de 5 de estos componentes a lo más dos fallen antes de 16 h.
    11. El tiempo que tarda un camión materialista entre la bodega de carga y la obra de construcción, es aproximadamente normal con una media de 25 minutos y una desviación estándar de 4 minutos. A que hora debe salir el camión de la bodega, para tener una probabilidad del 95% de estar en la obra de construcción a la 10 de la mañana.
    12. En un laboratorio médico se envasan ciertos medicamentos en sobre cuya distribución de pesos sigue la distribución normal con una desviación estándar de 1.4 gramos. Si el 1% de los sobres pesan más de 6 gramos. ¿Cuál es el valor de la media?
    13. La fuente de sodas "EL CEREZO ROSA" ha instalado una máquina automática, regulable de tal manera que la cantidad media de milk sea la que se desee, en cualquier caso esta cantidad sigue la distribución normal con una desviación estándar de 5.2 ml.
    1. si el nivel medio se ajusta a 303.9 ml. ¿Qué porcentaje de vasos de milk contendrá menos de 209 ml?
    2. A qué nivel medio debe ajustarse la máquina para que sólo el 2.28% de los vasos contenga a los más 205 ml?
    1. El promedio de vida de una licuadora de la marca S (Sony) es de 4 años, con una desviación estándar de un año, la fábrica repone sin cargo alguno al cliente todas las licuadoras que dejen de funcionar dentro del tiempo de garantía. Si sólo se desea reponer el 2% de las licuadoras que funcionen mal. ¿Qué tiempo de garantía se debe ofrecer? Suponga normalidad.
    2. El peso que soporta una varilla especial para construcción, sigue la distribución normal, si en promedio aguanta 25 toneladas antes de romperse con una varianza de 4 toneladas, a) ¿A qué proporción de estas varillas aguantan un peso mayor de 27 Toneladas? b) Si las especificaciones dadas por el fabricante requieren que todas las varillas aguanten un peso entre 22 y 28 toneladas. ¿Qué % de varillas se esperan rechazar? c) de acuerdo a lo especificado en el inciso b, si se tiene un lote de 4,000 varillas, ¿cuántas se rechazarían?
    3. El diámetro interior para un balero delantero de un automóvil de una marca W, está distribuido normalmente con una medio de 5 cm y una varianza de 0.04 cm, ¿Cuál es la probabilidad de que un balero tenga un diámetro interior, a) mayor a 5.04 cm? B) entre 4.98 y 5.02 cm?
    4. El promedio de tiempo en que un coche de una marca japonesa empieza a dar problemas es 3.5 años con una desviación estándar de 0.5 años, un coche de fabricación alemana tiene una media de 4 años con una desviación estándar de 0.4 años. En ambos casos el tiempo en que empiezan a dar problemas, sigue una distribución normal. Si se elige al azar un automóvil de cada marca, ¿Cuál es la probabilidad de que la marca japonesa dure más de 3 años y la marca alemana a lo más 4.2 años?
    5. Se sabe que el tiempo que tarda un jefe de personal en entrevistar a una aspirante para una vacante en su compañía sigue una distribución normal. Si el 10% de los entrevistados tardan más de 60 minutos y el 4% duran menos de 35 minutos, hallar la media y la varianza.
    6. La resistencia de los alambres que se usan en una computadora de una marca especial, esta distribuida normalmente. Si el 8% de estos alambres soportan una resistencia de más de 100 Ohms y el 25% soportan menos de 95 Ohms, encuentre la media y la desviación estándar.
    7. En un aserradero se cortan árboles en trozos de 4m en promedio, con una desviación estándar de 0.2m, estas longitudes están distribuidas normalmente.
    1. Si se elige un lote de 500 trozos ¿Cuál será el número probable de estos que superen la longitud de 4.1m?
    2. Si se eligen 8 trozos ¿cuál es la probabilidad de que exactamente 3 tengan una longitud mayor de 4.1m?
    1. Una compañía produce baleros con diámetros que tienen una distribución normal con una media de 3.0005 mm, y una desviación estándar de 0.0010 mm. Las especificaciones requieren que los diámetros estén en el intervalo 3.000 ± 0.0020 mm. Se rechazan los baleros que quedan fuera del intervalo debiéndose volver a maquinar. ¿Qué fracción de la producción será rechazado?
    2. Para seleccionar a sus empleados, un comerciante usa una prueba que tiene una puntuación promedio m , una desviación estándar s = 10. Suponga que la distribución de las puntuaciones es normal; y que una puntuación mínima de 65 le permite al solicitante seguir siendo considerado ¿Cuál debe ser el valor de m , si se quiere que aproximadamente el 2.5% de los solicitantes sigan siendo considerados después de esta prueba?
    3. Los diámetros promedio del grueso del diámetros de una gran número de tornillos se distribuyen normalmente con un promedio igual a 2.4 cm y desviación estándar igual a 0.5 cm.
    1. ¿Qué fracción de tornillos tendrá un diámetro promedio mayor que 3.0 cm?
    2. Si los tornillos que tienen un promedio de diámetro igual o menor que 1.9 cm son desechados ¿Qué porcentaje se elimina?
    3. Se supone que se selecciona al azar tres tornillos de entre todos ¿cuál es la probabilidad de que los tres tengan diámetro promedio mayor que 3 cm?
    1. Un estudio reporta que el 10% de los obreros de cierto departamentos pesan 112 lb o menos, y que 10% pesan 140lb o más. Suponga que esas frecuencias relativas pueden tomarse como probabilidades y que la distribución de los pesos es una distribución normal. Encuentre la media y la varianza de dicha distribución.

    Aproximación de la distribución Normal a la Binomial

    1. Una encuesta realizada por la dirección del agua potable entre los residentes de una ciudad indica que el 20% desea que se le instale un medidor de agua por considerar que la cuota fija de pago es superior al costo real de consumo. Si 100 residente solicitan su medidor de agua en dicha ciudad. Hallar la probabilidad de que entre 17 y 19 inclusive, le instalen su medidor de agua.
    2. La probabilidad de que un foco falle antes de 1,200 horas es del 30%. Encuentre la probabilidad de que un lote de 250 de estos focos, 60 fallen antes de 1,200 horas de uso continuo.
    3. Un enfermo de leucemia, debido al avance en la medicina tiene una probabilidad del 45% de recuperarse. Si de 90 personas que han contraído la enfermedad, encuentre la probabilidad de que al menos 25 sobrevivan.
    4. Los altos índices de contaminación ambiental en el D.F., ha ocasionado la fabricación para aparatos reducirla, la probabilidad de realizar la venta de uno de estos equipos en la primera entrevista es del 60%, si un vendedor entrevista a 80 posibles clientes. ¿Cuál es la probabilidad de al menos 40 clientes efectúen una compra?
    5. Un ingeniero Industrial cree que el 20% de la pérdida de trabajo horas – hombre en la planta en que labora, se debe a que los empleados no cumplen adecuadamente con su trabajo en el horario asignado. Calcula la probabilidad de que 80 trabajadores investigados de esta fábrica de 14 a 20 incurran en esta irregularidad.
    6. Una prueba de C.O.E. tiene 50 preguntas de opción múltiple con tres respuestas posibles. ¿Cuál es la probabilidad de que un estudiante que no sabe nada conteste correctamente de 14 a 25 preguntas?
    7. El gerente de una fábrica sabe que el 2% de los artículos que fabrica son defectuosos. Para hacer una prueba de control de calidad se seleccionan 1,000 artículos aleatoriamente, ¿Cuál es la probabilidad de que el número de artículos defectuosos, a) Sea mayor o igual a 14, b) Sea menor de 10?
    8. Un 30% de los estudiantes del I.P.N. son de provincia. Si se eligen aleatoriamente 200 estudiantes en una facultad determinada. ¿Cuál es la probabilidad de que a los más del 25% de estos estudiantes sean de provincia?
    9. Una compañía farmacéutica fabrica una medicina para bajar la presión arterial alta, afirma que es efectiva en el 90% de los casos en los pacientes de este mal. El Seguro Social para verificar esta afirmación utiliza una muestra de 150 individuos con presión alta y les da el medicamento, si es efectivo en 128 enfermos o más se acepta. ¿Cuál es la probabilidad de, a) aceptarlo si la efectividad es realmente 80%?, b) rechazarlo cuando la efectividad es menor o igual al 80%?
    10. En una gasolinera en la que se aceptan tarjetas de crédito, el 30% de los usuarios la utilizan. ¿Cuál es la Probabilidad de que 300 clientes al menos 195 paguen en efectivo?
    11. Una prueba de opción múltiple contiene 30 preguntas, cada una de ellas tiene 4 posibles respuestas. Si un estudiante que no estudió contesta en forma aleatoria cada pregunta. ¿Cuál es la probabilidad de que más de la mitad estén correctas?
    12. Una fábrica produce bombas para desaguar lavadoras, debido a su equipo ya obsoleto, se sabe que el 15% de su producción tiene alguna falla, se seleccionan 50 de estos aparatos aleatoriamente para una prueba de control de calidad- ¿Cuál es la probabilidad de que por lo menos 8 estén defectuosos?
    13. En una encuesta realizada por una empresa, encontró que el 60% de los entrevistados utilizan un automóvil de la marca W. Si se pregunta aleatoriamente a 100 personas con automóvil, que marca tienen de automóvil. ¿Cuál es la probabilidad de que a lo más 70 de este grupo tenga un automóvil de la marca W?
    14. Se sabe que el 15% de las lámparas que adquiere un municipio están defectuosas. En una muestra aleatoria de 200 lámparas, hallar la probabilidad de que a los más 25 o al menos 40 estén defectuosas.

    Distribución Exponencial

    1. En el conmutador de una compañía se reciben llamadas telefónicas a una razón de 3 llamadas por hora. ¿Cuál es la probabilidad de que transcurran al menos 20 minutos antes de la siguiente llamada?
    2. Las fallas de un equipo de radar siguen la distribución exponencial, el promedio de fallas es de una por cada hora 300 horas. Si se tiene una probabilidad del 96% de que no exista una avería en un intervalo de tiempo mayor o igual a t, calcule el tiempo para esta probabilidad.
    3. Una fábrica de llantas para automóviles garantiza que duran dos años en promedio, si el desgaste de estas llantas sigue la distribución exponencial. ¿Cuál es la probabilidad de que una llanta dure menos de 4 años?
    4. En los bancos Mexicanos sé a instituido el sistema "unicola" para atender a los clientes, el tiempo de espera sigue una distribución exponencial con una medio de 10 minutos. Determinar la probabilidad de que un cliente sea atendido en menos de 9 minutos en al menos 6 de los 8 días siguientes.
    5. Según estadísticas que se han llevado a cabo un molino de trigo se descompone en promedio una vez cada dos años ¿Cuál es la probabilidad de que la siguiente descompostura sea dentro de 6 meses?
    6. De acuerdo a la escala de Richter la magnitud de un terremoto en la ciudad de México, se supone que sigue la distribución exponencial con un promedio de 1 cada 10 años. ¿Cuál es la probabilidad de que un terremoto supere el 7.5 de esta escala, la magnitud del gran terremoto de 1985 ocurrido en la ciudad?
    7. El tiempo de espera en una cola de banco con ideas modernas, para ser atendido sigue una distribución exponencial y en promedio es de un cliente cada 10 minutos. Calcule la probabilidad de que el tiempo de espera sea menor a 9 minutos.
    8. En una clínica de la Cruz Roja, el tiempo entre llamadas de emergencia que se reciben en las primeras horas de un día cualquiera sigue una distribución exponencial con un tiempo medio de una hora entre llamadas. Calcule la probabilidad de que entre dos llamadas transcurran menos de tres horas.
    9. Una terminal de computadoras esta conectada a una de si un estudiante la utiliza, el tiempo de respuesta de la computadora central sigue una distribución exponencial con un tiempo promedio de 4 segundos. ¿Cuál es la probabilidad de que transcurran a los más 6 segundos para la llegada de la respuesta?
    10. Un ciudadano contrató un servicio de alarma con una compañía del ramo. Si la alarma se activa, el tiempo de respuesta de la compañía sigue una distribución exponencial con una respuesta de 20 minutos en promedio. Determine la probabilidad de que la respuesta de la compañía tarde al menos 17 minutos.
    11. El tiempo que tarda un empleado en tomar un pedido de un cliente en un restaurante que da servicio en su coche, sigue una distribución exponencial con una respuesta de atención al cliente de 4 minutos en promedio. ¿Qué probabilidad hay de que de los 4 clientes siguientes al menos dos deban esperar menos de 4 minutos?
    12. La llegada de los trenes del metro (Indios Verdes – Universidad) a la estación Basílica sigue una distribución uniforme en el intervalo [0, 5] y la llegada de los trenes (Martín Carrera – Rosario) a esta misma estación siguen una distribución exponencial con parámetro l . Encuentre el valor del parámetro l si var(I-V) = var(M – R)
    13. Una compañía que produce tarjetas de video para P.C. sabe que el tiempo de vida de estas, sigue una distribución exponencial con una vida medio de 10 años. Si el fabricante no quiere reemplazar más del 8% de su producto, determine este tiempo de garantía al mes más cercano.
    14. En la estación del metro Pantitlan en la Ciudad de México, el tiempo de llegada de los trenes sigue una distribución exponencial con 10 minutos en promedio por llegada. Determinar la probabilidad de que un usuario tenga que esperar más de 6 minutos la llegada de un tren.
    15. Una compañía que fabrica focos para un fin determinado sabe que el tiempo de vida de estos sigue una distribución exponencial con una vida media de 7 años, la compañía quiere determinar un tiempo de garantía de tal manera que no tenga que reemplazar más del 10% de los focos. Determinar este tiempo de garantía, aproxime al mes más cercano.

    Resumen

    Distribución uniforme de Probabilidad

    Una variable aleatoria X está distribuida uniformemente en a < x < b si su función de densidad es

    image

    y la distribución se llama distribución uniforme.

    La función de distribución está dada por

    image

    La media y la varianza son respectivamente

    image

    Distribución Normal de Probabilidad y Aproximación a la Binomial

    Uno de los más importantes ejemplos de una distribución de probabilidad continua es la distribución normal, algunas veces denominada la distribución gaussiana.

    La función de densidad para la distribución está dada por

    image

    donde m y s son la media y la desviación típica respectivamente.

    PROPIEDADES:

    1. image
    2. f (x) > 0 " x
    3. image
    4. f [(x + m )] = f [- (x - m )]. La densidad es simétrica alrededor de m .
    5. El valor máximo de f ocurre en x = m
    6. Los puntos de inflexión de f están en x = m ± s

    La función de distribución correspondientes está dada por

    image

    En este caso decimos que la variable aleatoria X está normalmente distribuida con media m y varianza s 2.

    La distribución normal estándar correspondiente es F , donde

    image

    Si hacemos que Z sea la variable normalizada correspondiente a X, es decir si hacemos

    image

    entonces la media o el valor esperado de Z es 0 y la varianza es 1.

    Si n es muy grande y ni p y ni q están muy próximas a cero, la distribución binomial puede aproximarse estrechamente a la distribución normal con variable tipificada dada por

    image

    Aquí X es la variable aleatoria que da el número de éxitos en n pruebas de Bernoulli y p es la probabilidad de éxitos. La aproximación es tanto mejor conforme aumenta n, y en el límite es total.

    3.8 Teorema de Chebyshev

    Distribución Exponencial

    La distribución exponencial tiene función de densidad

    image

    donde l es una constante positiva real.

    El valor esperado y la varianza de la distribución exponencial son

    image

    Otras Publicaciones del autor

    La siguiente tabla muestra los trabajos publicados por el Ingenierio Ivan Escalona para quien este interesado en consultar los diversos temas y bajar los trabajos, comentarios al correo: ivan_escalona[arroba]hotmail.com

    Ahorro de energía

    http://www.monografias.com/trabajos12/ahorener/ahorener.shtml

    Aire comprimido

    http://www.monografias.com/trabajos13/compri/compri.shtml

    Análisis de factibilidad de la sustitución

    http://www.monografias.com/trabajos17/factibilidad/factibilidad.shtml

    Análisis de la Psicopatología

    http://www.monografias.com/trabajos12/pedpsic/pedpsic.shtml 

    Análisis Sistemático de la Producción

    http://www.monografias.com/trabajos12/andeprod/andeprod.shtml

    Antropología Filosófica

    http://www.monografias.com/trabajos12/antrofil/antrofil.shtml

    Antropología Filosófica 2

    http://www.monografias.com/trabajos12/wantrop/wantrop.shtml

    Aplicación de la planeación estratégica

    http://www.monografias.com/trabajos16/planeacion-nepsa/planeacion-nepsa.

    Aplicación de un estudio de Mercado

    http://www.gestiopolis.com/recursos2/documentos/fulldocs/mar/esmerivan.htm

    Aplicación de un estudio de Mercado

    www.monografias.com/trabajos16/estudio-mercado-cafe/estudio-mercado-cafe.shtml

    Aplicaciones del tiempo estánda

    http://www.monografias.com/trabajos12/ingdemeti/ingdemeti.shtml

    Artículo 14 y 16 de la Constitución

    http://www.monografias.com/trabajos12/comex/comex.shtml 

    Átomo

    http://www.monografias.com/trabajos12/atomo/atomo.shtml

    Balanceo de Líneas de ensamble

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/pcplinen.htm

    Balanceo de líneas y tiempo estándar

    http://www.monografias.com/trabajos14/balanceo/balanceo.shtml

    Biología

    http://www.divulcat.com/monografias/biologia/biologia.html

    Biología

    http://www.monografias.com/trabajos12/biolo/biolo.shtml

    Código de Ética

    http://www.monografias.com/trabajos12/eticaplic/eticaplic.shtml

    Comparación de autores y escuelas

    http://www.monografias.com/trabajos12/pedidact/pedidact.shtml 

    Conocimiento sensible

    http://www.monografias.com/trabajos12/pedyantr/pedyantr.shtml

    Contrato individual de trabajo

    http://www.monografias.com/trabajos12/contind/contind.shtml

    Calidad - Gráficos de Control

    http://www.monografias.com/trabajos12/concalgra/concalgra.shtml 

    Control de Calidad

    http://www.monografias.com/trabajos11/primdep/primdep.shtml

    Cuestiones Antropológicas

    http://www.mercaba.org/FICHAS/Monografias/cuestiones_antropologicas.htm

    Curso de fisicoquímica

    http://www.monografias.com/trabajos12/fisico/fisico.shtml

    Curso de Inglés para Ingeniería Industrial

    http://www.monografias.com/trabajos14/ingless/ingless.shtml

    Definición de Filosofía

    http://www.monografias.com/trabajos12/wfiloso/wfiloso.shtml

    Delitos patrimoniales y Responsab

    http://www.monografias.com/trabajos12/derdeli/derdeli.shtml 

    Nociones de derecho positivo

    http://www.monografias.com/trabajos12/dernoc/dernoc.shtml

    Derecho de la Familia Civil

    http://www.monografias.com/trabajos12/derlafam/derlafam.shtml 

    Diseño y manufactura asistido por PC

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/macives.htm

    Diseño y manufactura asistido por PC

    http://www.monografias.com/trabajos14/manufaccomput/manufaccomput.shtml

    Distribución de Planta

    http://www.monografias.com/trabajos12/distpla/distpla.shtml

    El hombre ante los problemas

    http://www.monografias.com/trabajos12/quienes/quienes.shtml

    Perfil del hombre y Cultura en México

    http://www.monografias.com/trabajos12/perfhom/perfhom.shtml 

    El Poder de la Autoestima

    http://www.monografias.com/trabajos12/elpoderde/elpoderde.shtml 

    El Quijote de la Mancha

    http://www.monografias.com/trabajos12/lresquij/lresquij.shtml

    Elaboración de un Manual de Calidad

    http://www.gestiopolis.com/recursos2/documentos/fulldocs/ger/mancalivan.htm

    Elaboración de un Piñón Engrane Cónico c/Cold Rolled 1018

    http://www.monografias.com/trabajos16/pinion/pinion.shtml

    Elaboración de una tuerca giratoria de acero duro TX10T

    http://www.monografias.com/trabajos17/tuerca-giratoria/tuerca-giratoria.

    Electroválvulas en Sistemas de Ctrl

    http://www.monografias.com/trabajos13/valvu/valvu.shtml

    Empresa y familia

    http://www.monografias.com/trabajos12/teoempres/teoempres.shtml

    Entender el Mundo de Hoy

    http://www.monografias.com/trabajos12/entenmun/entenmun.shtml

    Estructura de Circuitos Hidráulicos

    http://www.monografias.com/trabajos13/estrcir/estrcir.shtml

    Estudio Económico en una Empresa

    www.monografias.com/trabajos16/evaluacion-ferrioni/evaluacion-ferrioni.s...

    Etapa de la Independencia de Mexico

    http://www.monografias.com/trabajos12/hmetapas/hmetapas.shtml 

    Eva de proyectos - Estudio Económico

    http://www.gestiopolis.com/recursos2/documentos/fulldocs/fin/evaproivan.htm

    Exámenes de Álgebra Lineal

    http://www.monografias.com/trabajos12/exal/exal.shtml

    Factores Universales para determinar la confiabilidad

    http://www.monografias.com/trabajos16/confiabilidad/confiabilidad.shtml

    Filosofía de la educación

    http://www.monografias.com/trabajos12/pedfilo/pedfilo.shtml

    Física Universitaria – Mecánica

    http://www.monografias.com/trabajos12/henerg/henerg.shtml 

    Física Universitaria – Oscilaciones

    http://www.monografias.com/trabajos13/fiuni/fiuni.shtml 

    Fraude del Siglo

    http://www.monografias.com/trabajos12/frasi/frasi.shtml

    Frederick Winslow Taylor - Padre de la Ingeniería Industrial

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/twtivan.htm

    Fundamentos de Economía en Calidad

    http://www.gestiopolis.com/recursos/documentos/fulldocs/fin/fundelacal.htm

    Garantías Individuales

    http://www.monografias.com/trabajos12/garin/garin.shtml 

    Giovanni Sartori, Homo videns

    http://www.monografias.com/trabajos12/pdaspec/pdaspec.shtml

    Gobierno del general Manuel González

    http://www.monografias.com/trabajos12/hmmanuel/hmmanuel.shtml 

    Herramientas para Ingenieros Industriales Harvard-UPIICSA

    http://www.gestiopolis.com/recursos5/docs/ger/estamanufac.htm

    Herramientas por arranque de viruta

    www.monografias.com/trabajos14/maq-herramienta/maq-herramienta.shtml

    Historia – El Maximato

    http://www.monografias.com/trabajos12/hmmaximt/hmmaximt.shtml 

    Historia – Inquisición en la New España

    http://www.monografias.com/trabajos12/hminqui/hminqui.shtml 

    Historia – La Guerra con los EEUU

    http://www.monografias.com/trabajos12/hmguerra/hmguerra.shtml 

    Historia – La Intervención Francesa

    http://www.monografias.com/trabajos12/hminterv/hminterv.shtml 

    Historia - Las Leyes de Reforma

    http://www.monografias.com/trabajos12/hmleyes/hmleyes.shtml 

    Historia – Primer Gobierno Centralista

    http://www.monografias.com/trabajos12/hmprimer/hmprimer.shtml 

    Identificación de la problemática mediante Pareto e Ishikawa

    www.monografias.com/trabajos17/pareto-ishikawa/pareto-ishikawa.shtml

    Trabajo de ingeniería de medición

    http://www.monografias.com/trabajos12/medtrab/medtrab.shtml

    Ingeniería de Métodos – Muestreo

    http://www.monografias.com/trabajos12/immuestr/immuestr.shtml 

    Ingeniería de Métodos - Análisis Sistemático de la producción

    http://www.monografias.com/trabajos12/igmanalis/igmanalis.shtml

    Ingeniería Industrial – Programación Lineal en Investigación de operaciones

    http://www.monografias.com/trabajos13/upicsa/upicsa.shtml

    Ingeniería Industrial y Mercadotecnia

    www.monografias.com/trabajos16/ingenieria-mercadotecnia/ingenieria-mercadotecnia.shtml

    Introducción a la ingeniería Industrial

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/introalaii.htm

    Introducción al JIT

    http://www.gestiopolis.com/recursos2/documentos/fulldocs/ger/introjit.htm

    Investigación de Mercados

    http://www.miespacio.org/cont/invest/invmer.htm

    Investigación de mercados

    http://www.monografias.com/trabajos11/invmerc/invmerc.shtml

    IO - Método Simplex

    http://www.monografias.com/trabajos13/icerodos/icerodos.shtml

    IO - Redes y Admon de Proyectos

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/iopertcpm.htm

    Jean Michelle Basquiat

    http://www.monografias.com/trabajos12/bbasquiat/bbasquiat.shtml

    José López Portillo

    http://www.monografias.com/trabajos12/hmlopez/hmlopez.shtml 

    Juicio de amparo

    http://www.monografias.com/trabajos12/derjuic/derjuic.shtml

    Enseñanza de la ingeniería

    http://www.monografias.com/trabajos12/pedense/pedense.shtml

    La Familia en El derecho Civil Mexicano

    http://www.monografias.com/trabajos12/dfamilien/dfamilien.shtml 

    La Familia en el Derecho Positivo

    http://www.monografias.com/trabajos12/dlafamil/dlafamil.shtml 

    La Familia II

    http://www.monografias.com/trabajos12/lafami/lafami.shtml

    La vida: Las cosas se conocen

    http://www.monografias.com/trabajos12/lavida/lavida.shtml

    Las religiones y la moral

    http://www.monografias.com/trabajos12/mortest/mortest.shtml 

    Legislación y Mecanismos para la promoción Industrial

    http://www.monografias.com/trabajos13/legislac/legislac.shtml

    Manual del Tiempo Estándar

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger/mantiemesivan.htm

    Manufactura Industrial II - Trabajo Final

    http://www.gestiopolis.com/recursos/ documentos/fulldocs/ger1/tfinman2.htm

    Mecánica Clásica – Movimiento

    http://www.monografias.com/trabajos12/moviunid/moviunid.shtml 

    Memoria de cálculo

    http://www.monografias.com/trabajos12/elplane/elplane.shtml

    Memoria técnica de cálculo

    http://www.monografias.com/trabajos12/electil/electil.shtml

    Métodos de Evaluación Financiera en Evaluación de proyectos

    www.monografias.com/trabajos16/metodos-evaluacion-economica/metodos-eval...

    México de 1928 a 1934

    http://www.monografias.com/trabajos12/hmentre/hmentre.shtml 

    México: ¿Adoptando Nueva Cultura?

    http://www.monografias.com/trabajos12/nucul/nucul.shtml

    Moral – Salvifichi Doloris

    http://www.monografias.com/trabajos12/morsalvi/morsalvi.shtml 

    Museo de las Culturas

    http://www.monografias.com/trabajos12/hmmuseo/hmmuseo.shtml 

    Introducción a los Sistemas Hidráulicos

    http://www.monografias.com/trabajos13/intsishi/intsishi.shtml

    Válvulas Auxiliares Neumáticas

    http://www.monografias.com/trabajos13/valvaux/valvaux.shtml

    Válvulas Neumáticas

    http://www.monografias.com/trabajos13/valvidos/valvidos.shtml

    Válvulas Hidráulicas

    http://www.monografias.com/trabajos13/valhid/valhid.shtml

    Neumática: Generación, Tratamiento

    http://www.monografias.com/trabajos13/genair/genair.shtml

    Nociones de derecho mexicano

    http://www.monografias.com/trabajos12/dnocmex/dnocmex.shtml

    Pagos Salariales - Plan de incentivos

    http://www.gestiopolis.com/recursos/documentos/fulldocs/rrhh/pagosal.htm

    PCP - Balanceo

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/pycdelapro.htm

    PCP - MRP (Planeación de Requerimiento de Materiales)

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/mrpivan.htm

    PCP - Pronósticos

    http://www.monografias.com/trabajos13/placo/placo.shtml

    Plásticos y Aplicaciones

    http://www.monografias.com/trabajos13/plapli/plapli.shtml

    Prácticas de Laboratorio de Electricidad

    http://www.monografias.com/trabajos12/label/label.shtml

    Prácticas del laboratorio de química

    http://www.monografias.com/trabajos12/prala/prala.shtml

    Problemas de Física del Resnick

    http://www.monografias.com/trabajos12/resni/resni.shtml

    Problemas de Ingeniería en Neumática

    http://www.monografias.com/trabajos13/maneu/maneu.shtml

    Procesos de Manufactura por Arranque de Viruta

    http://www.monografias.com/trabajos14/manufact-industr/manufact-industr.

    Producción química: Plásticos

    http://www.monografias.com/trabajos13/plasti/plasti.shtml

    Pruebas Mecánicas

    http://www.monografias.com/trabajos12/pruemec/pruemec.shtml 

    Pruebas No Destructivas - Ultrasonido

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/disultra.htm

    Psicosociología Industrial

    http://www.monografias.com/trabajos13/psicosoc/psicosoc.shtml

    Ranma Manga en inglés

    http://www.monografias.com/trabajos12/ranma/ranma.shtml

    Recensión del Libro Didáctica Magna

    http://www.monografias.com/trabajos12/wpedag/wpedag.shtml

    Recensión del libro Froebe

    http://www.monografias.com/trabajos12/introped/introped.shtml

    Seguridad Industrial

    www.monografias.com/trabajos16/seguridad-industrial/seguridad-industrial.shtml

    Sentido del Humor en la Educación

    http://www.monografias.com/trabajos12/filyepes/filyepes.shtml 

    Teoría de al Empresa

    http://www.monografias.com/trabajos12/empre/empre.shtml

    Teoría de Restricciones

    http://www.gestiopolis.com/recursos/ documentos/fulldocs/ger1/tociem.htm

    Termómetros en la Instrumentación

    http://www.monografias.com/trabajos14/termoins/termoins.shtml

    Therbligs - Las Llaves para simplificar

    http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/therbligs.htm

    Trabajo Final de Logística Industrial

    http://www.monografias.com/trabajos16/logistica-industrial/logistica-ind.

    UPIICSA

    http://www.monografias.com/trabajos12/hlaunid/hlaunid.shtml

    Vicente Fox

    http://www.monografias.com/trabajos12/hmelecc/hmelecc.shtml 

    Vocabulario para Estudiantes

    http://www.monografias.com/trabajos13/spanglish/spanglish.shtml

    Autor

    Ing. Iván Escalona

    Consultor Logística,

    (México)

    Ingeniero Industrial

    resnick_halliday[arroba]yahoo.com.mx,

    ivan_escalona[arroba]hotmail.com

    Nota: Si deseas agregar un comentario o si tienes alguna duda o queja sobre algún(os) trabajo(s) publicado(s), puedes escribirme a los correos que se indican, indicándome que trabajo fue el que revisaste escribiendo el título del trabajo(s), también de donde eres y a que te dedicas (si estudias, o trabajas) Siendo específico, también la edad, si no los indicas en el mail, borraré el correo y no podré ayudarte, gracias.

    - Estudios Universitarios: Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas (U.P.I.I.C.S.A.) del Instituto Politécnico Nacional (I.P.N.)

    - Centro Escolar Patoyac, (Incorporado a la UNAM)

    Origen: México


    Esto viene directamente de http://www.monografias.com/trabajos32/problemario-probabilidad/problemario-probabilidad.shtml

    Páginas: [1] - [2]

    (obligatorio)