X

...cargando

Cargando, espere un momento por favor...

 
 
 
Agencia de colocación autorizada Nº 9900000169

Euroinnova Formación

 
Mis páginas > Células Fotovoltaicas y Paneles Solares

Células Fotovoltaicas y Paneles Solares

Introducción

Una célula solar es un sistema semiconductor que absorbe luz (energía solar) y la convierte en energía eléctrica. Para convertir la energía del Sol en energía eléctrica y poder utilizarla de la forma más eficiente y racional posible se diseñan los sistemas fotovoltaicos. La célula solar es el elemento que convierte los fotones que proceden del Sol en una corriente eléctrica que circula por un elemento que denominamos carga. Hoy en día la célula solar más común es un dispositivo de estado sólido fabricado con materiales semiconductores.

El efecto fotovoltaico fue identificado por primera vez en 1839 por Becquerel, quien observó que la tensión que aparecía entre dos electrodos inmersos en electrolito dependía de la intensidad de luz que incidiese sobre ellos. El mismo efecto fue observado por Adams y Day, en 1879, pero esta vez utilizando un elemento sólido: el Selenio. Sin embargo la primera célula solar moderna tuvo que esperar a Chapin en 1954. Fue una célula de Silicio y no se dieron muchos detalles de su estructura debido, probablemente, al temor a que fuese copiada. La motivación para el estudio y desarrollo de las células solares durante los primeros años de investigación fue su aplicación como fuente suministradora de energía a los satélites espaciales. Hoy se espera que las células solares y la energía solar fotovoltaica contribuyan de forma importante al suministro de energía limpia a la sociedad.

Teoría básica de semiconductores

Las células solares modernas están fabricadas de unos materiales con propiedades electrónicas específicas que denominaremos semiconductores. Las células solares funcionan gracias a algunas de esas propiedades que es necesario conocer para adquirir una buena comprensión del funcionamiento de una célula solar.

Aunque la teoría atómica es complicada, sabemos que los electrones que se encuentran orbitando alrededor del núcleo atómico no pueden tener cualquier energía sino solamente unos valores determinados que denominaremos niveles energéticos a los que se le pone nombre: 1s, 2s, 2p, 3s, etc... En el caso del Silicio la última capa, la número 3, posee cuatro electrones y faltan también cuatro electrones para completarla. Cuando los átomos de Silicio se unen unos a otros comparten los electrones de las últimas capas con los átomos vecinos formando lo que se denomina enlaces covalentes, muy estables y fuertes. Estas agrupaciones se llevan a cabo de forma ordenada dando lugar a un sólido de estructura cristalina. De la misma forma que los electrones en un átomo no pueden tener cualquier energía, los electrones en un cristal tampoco pueden tomar cualquier energía. Sin embargo lo que antes, en el átomo, era un único nivel, ahora, son agrupaciones de niveles llamadas bandas de energía. Y de la misma forma que los últimos niveles energéticos en un átomo definen las propiedades químicas del átomo, las últimas bandas de energía definen las propiedades electrónicas de un cristal. Las dos últimas bandas ocupadas (total o parcialmente por electrones) reciben el nombre de banda de conducción (para la más energética) y banda de valencia.

Estas bandas están separadas por una energía Eg denominada energía del gap, que desempeña un papel principal en la teoría de los semiconductores. En general, a una temperatura dada, algunos electrones tendrán energía suficiente para desligarse de los átomos. A esos electrones libres se les denomina electrones propiamente. A los enlaces que han dejado vacíos se les denomina huecos. Reciben un nombre especial debido a que se comportan como si se tratase de partículas con cargas positivas. A los electrones que todavía permanecen ligados a los átomos se les asocia con los niveles energéticos correspondientes a la banda de valencia. En un semiconductor como el que estamos explicando, el número de electrones es igual al de huecos.

No todos los cristales dan lugar a unas bandas de energía con la disposición adecuada para que el material exhiba propiedades semiconductoras. Puede suceder que Eg=0, entonces tenemos un cristal conductor o, puede suceder que Eg sea tan levado que el número de electrones (electrones con energía suficiente como para liberarse de los átomos) sea nulo en la práctica: entonces tenemos un cristal aislante.

Propiedades de los semiconductores

Con la descripción anterior, parece que la única diferencia entre un semiconductor y un conductor o un aislante radica en que su conductividad se sitúa en un término medio. Desde luego esa es una de sus propiedades, pero hay más que resumimos aquí:

Para explicar los mecanismos de conducción de la corriente eléctrica en un semiconductor hay que recurrir a las partículas positivas (huecos) y negativas (electrones) que hemos definido en el apartado anterior. En un conductor, la conducción de la corriente se puede explicar únicamente en base a electrones (partículas negativas).

En un conductor, su resistencia aumenta con la temperatura, en un semiconductor disminuye. La conductividad está relacionada con el número de partículas capaces de conducir la corriente. Cuanta más haya, más conductor. Como en un semiconductor este número aumenta exponencialmente con la temperatura, la conductividad aumenta.

Cuando un semiconductor se ilumina con fotones con una energía mayor que la energía del gap, su conductividad aumenta. Esto es debido a que la luz, junto al mecanismo de generación radiactivo que se explicará luego, aumenta el número de partículas capaces de conducir la corriente.

Semiconductores tipo p y tipo n

Mediante tecnología algunos átomos de los que constituyen la red cristalina del semiconductor se pueden cambiar por otros, llamados impurezas, que pueden ser de dos tipos:

  • donadoras, si en su última capa tienen un electrón más que los átomos que constituyen la red.
  • aceptoras, si tienen un electrón menos.

Cuando en un semiconductor introducimos impurezas donadoras éstas pueden perder el electrón fácilmente. Si introducimos un número de impurezas adecuado es posible conseguir que el número de electrones en el semiconductor (tipo n) venga determinado por el número de impurezas.

De forma análoga, cuando en el semiconductor introducimos impurezas aceptoras, éstas capturan un electrón fácilmente lo que origina la aparición de un hueco en la red. De nuevo, introduciendo el número de impurezas adecuado puede conseguirse que el número de huecos en el semiconductor (tipo p) venga determinado por el número de impurezas. En ambos casos se dice que el semiconductor tiene carácter extrínseco, debido a que ahora la conductividad del semiconductor no está determinada por una propiedad característica del mismo (ó intrínseca) sino por algo ajeno (ó extrínseco) que se ha introducido (impurezas).

Al describir el concepto de electrón y hueco en los apartados anteriores ligamos su existencia al hecho por el cual un electrón gana energía suficiente para liberarse del átomo al que estaba ligado. Precisando un poco más se dice que un electrón gana energía suficiente para promocionarse de la banda de valencia a la banda de conducción, y de forma más breve aún, se ha generado un par electrón-hueco (par eh). El proceso inverso también existe y un electrón libre puede ser capturado por un hueco (enlace vacío) de la red. Se dice entonces que se ha producido una recombinación de un par eh. Estos procesos ocurren continuamente de forma dinámica en un semiconductor. Pero si un semiconductor se encuentra en equilibrio (aislado del exterior) el número de procesos de generación por unidad de tiempo tiene que ser igual al número de procesos de recombinación. O sea, que la población de de electrones y huecos permanece constante.

Existen varios procesos de recombinación/generación (procesos en los que un electrón puede ganar o perder energía para intercambiarse entre la banda de valencia y conducción). Nosotros vamos a analizar el proceso de generación llamado radiactivo en el cual, el electrón gana su energía gracias a un fotón. En una célula solar es necesario absorber fotones, por lo cual ahora entendemos por qué la conductividad de un semiconductor aumenta cuando se ilumina con fotones de energía mayor que la energía del gap, ya que sólo fotones con esa energía son capaces de aumentar la población de de partículas capaces de conducir. Otros aspectos sobre los procesos de recombinación radiactiva son:

  • Si admitimos que un semiconductor puede generar pares eh a partir de un fotón debemos admitir también que puede perder (recombinar) pares eh mediante la emisión de un fotón. En consecuencia, si admitimos que la célula genera pares eh, también debemos admitir que recombina pares eh, es decir, que tiene un mínimo volumen de pérdidas. Esta dualidad es la teoría que está detrás de los cálculos de los límites de la eficiencia de conversión fotovoltaica.
  • A nivel de célula solar existen varios fenómenos (de emisión estimulada y de reciclaje de fotones) que son los responsables de que la tensión máxima teórica que podemos obtener de una célula solar fotovoltaica coincida con el valor del gap del semiconductor expresado en eV.

Estructura básica de una célula solar

Con la teoría ya descrita en los párrafos anteriores sabemos que un fotón puede ser absorbido para crear un par eh. Como ilustra la figura 4.4 no basta con poner dos cables a un semiconductor y ponerlo al Sol para que circule una corriente eléctrica. Si lo hiciésemos lo único que conseguiríamos es que el semiconductor se calentase, ya que los pares eh que generase la luz desaparecerían en un punto dentro del semiconductor.

Para conseguir la extracción de corriente es necesario fabricar una unión pn que consiste en fabricar un semiconductor en el que una zona sea de semiconductor tipo n y la otra zona de tipo p. Esta fabricación no consiste en pegar un semiconductor p a uno n sino que debe hacerse de manera que la red cristalina del semiconductor no se interrumpa al pasar de una región a otra. Es necesario pues, el empleo de tecnologías especiales.

La existencia de la unión pn hace posible la aparición de un campo eléctrico en la célula (con la dirección del lado n al lado p) que separa los pares eh: los huecos, cargas positivas, los dirige hacia el contacto del lado p lo que provoca la extracción de un electrón desde el metal que constituye el contacto; los electrones, cargas negativas, los dirige hacia el contacto del lado n inyectándolos en el metal. Esto hace posible el mantenimiento de una corriente eléctrica por el circuito exterior y en definitiva el funcionamiento de la célula como generador fotovoltaico.

Otro concepto importante en la estructura de una célula solar es el concepto que hace referencia a lo que llamamos malla de metalización frontal. Los contactos metálicos superficiales son necesarios para extraer la corriente eléctrica de la célula. El metal es un material opaco a la luz, en consecuencia, al menos el contacto frontal (el del lado de la célula expuesta directamente al Sol) no puede recubrir completamente la superficie de la célula. Puede pensarse entonces que el contacto frontal debe ser lo más pequeño (en superficie) posible, pero si se hace excesivamente pequeño uno de los parámetros de los que hablaremos posteriormente, la resistencia serie, aumenta y esto significa una pérdida de eficiencia de la célula. Así pues ha de llegarse a una solución de compromiso para que la superficie del contacto frontal sea lo suficientemente baja para permitir el paso de la luz del Sol y lo suficientemente alta para que la resistencia serie de la célula sea tolerable. (Ver Figura 5)

Funcionamiento de una célula solar

Cuando una célula solar se expone al Sol la luz genera (g) pares eh. Cada uno de estos pares constituye un potencial electrón circulando por el circuito exterior. Asociado a este proceso tenemos los procesos de recombinación (r). Cada proceso de recombinación aniquilará uno de los pares eh generados y, por lo tanto, tendremos un electrón menos disponible para circular por el circuito exterior. De ahí que se hable del mecanismo de recombinación como un mecanismo de pérdidas para la célula.

, , ,

Última modificación hace 2437 días por Administrador

(obligatorio)